
International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1197
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Pipelining: Basic Concepts and Approaches

RICHA BAIJAL1
1Student,M.Tech,Computer Science And Engineering

Career Point University,Alaniya,Jhalawar Road,Kota-325003 (Rajasthan)

Abstract-This paper is concerned with the pipelining principles while designing a processor.The basics of instruction pipeline are
discussed and an approach to minimize a pipeline stall is explained with the help of example.The main idea is to understand the working of
a pipeline in a processor.Various hazards that cause pipeline degradation are explained and solutions to minimize them are discussed.

Index Terms— Data dependency, Hazards in pipeline, Instruction dependency, parallelism, Pipelining, Processor, Stall.

——————————  ——————————

 1 INTRODUCTION

T O understand what pipelining is,let us consider the as-

sembly line manufacturing of a car.If you have ever gone to a
machine work shop ; you might have seen the different as-
semblies developed for developing its chasis,adding a part to
its body,wheels alignment and painting the parts.All this to-
gether bring up your favourite car,every assembly line adding
to the perfection and doing their best.Now,if these units wait
for resources or we can say that if the second stage is depend-
ent on the first one,then more time will be consumed in build-
ing the car.So,we divide the tasks in such a way that their de-
pendency is relaxed.In pipelining a task on computer,we ei-
ther divide it in such a way that one task is independent of the
other so that hardware units can switch the tasks between
them using a clock or we add a hardware circuitry to speed up
the tasks. The second approach adds up the cost while the first
one results in the efficient utilization of available resources,to
what we call Pipelining.[1]

2 PARALLELISM AND PIPELINING :

When we implement pipelining in processing a task on com-
puter,we create objects or stages.These stages are inde-
pendently working and accomplish a certain task. After a cer-
tain period of time ,the output from a certain stage is given as
input to the next stageThis is done by synchronizing a clock or
simply specifying a time period for certain task.Then next
stage works on the combined input for a period of time and
produces the desired results.Meanwhile,the other stages also
work on their inputs. If i have to summarize the concept of
pipelining,it is simply achieving maximum throughput from
the computer by utilizing resources in parallel manner and
avoiding resource deadlocks.
A very good example from our daily lives is :
I want to paint my house. It has 4 rooms.one approach is to
employ a painter with his paint bucket and wait until he
paints one room. The second approach is to employ another
worker with him who in parallel works in the other room and

does the paint. Still,2 rooms are idle. These rooms that I want
to paint constitute my hardware.The painter and his skills are
the objects and the way i am using them refers to the stag-
es.Now,it is quite possible i limit my resources,i.e. I just have
two buckets of paint at a time;therefore,i have to wait until
these two stages give me an output.Although,these are inde-
pendent tasks,but what i am limiting is the resources.
I hope having this comcept in mind,now the reader knows
what he has to do with his computer to achieve a maximum
utilization.[2]

3 DIFFERENCE BETWEEN SEQUENTIAL PRO-
CESSING AND PIPELINING :

Below is an illustration of the basic difference between execut-
ing four subtasks of a given instruction (in this case fetching F,
decoding D, execution E, and writing the results W) using
pipelining and sequential processing.[3]

Pipelining refers to the technique in which a given task is di-
vided into a number of subtasks that need to be performed in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1198
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

sequence.
• Each subtask is performed by a given functional unit.
• The units are connected in a serial fashion and all of them
operate simultaneously.
• The use of Pipelining improves the performance as com-
pared to the traditional sequential execution of tasks.
In the given fig.,sequential processing is divided into three
instructions I1,I2 and I3 and these instruction sets are being
processed in serial manner in time slots of 1-4,5-8 and 9-12
respectively.
While in parallel processing,instruction sets I1,I2 and I3 are
arranged in parallel manner and processing is done in serial
manner. Tasks are divided such that no 2 decode instructions
or no 2 write instructions are performed in the same time
slot.In parallel processing,the instruction queue has been pro-
cessed in 6 time slots. As such the time of processing instruc-
tions is reduced and efficiency of processor is increased.

4 PERFORMANCE OF A PIPELINE :

In order to formulate some performance measures for the
goodness of a pipeline in processing a series of tasks, a space
time chart (called the Gantt's Chart) is used. The chart shows
the succession of the sub-tasks in the pipe with respect to
time.[4]

5 PERFORMANCE ANALYSIS OF A PIPELINE :

In the following analysis, we provide three performance
measures for the goodness of a pipeline. These are the Speed-
up S(n), Throughput U(n), and Efficiency E(n). It should be
noted that in this analysis we assume that the unit time T = t
units In the following analysis, we provide three performance
measures for the goodness of a pipeline.
1.Speed-up S(n): Consider the execution of m tasks (instruc-
tions) using n-stages (units) pipeline. As can be seen, n + m-1
time units are required to complete m tasks.

Speed-up S(n)= 𝑇𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

𝑇𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑃𝑟𝑎𝑙𝑙𝑒𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

= (𝑚 ×𝑛×𝑡)
(𝑛+𝑚−1)×𝑡

 = 𝑚×𝑛
𝑚+𝑛−1

lim𝑚→∞ 𝑆(𝑛)= n (i.e., n-fold increase in speed is theoretically
possible)

For the given example : m=10,n=4,t=13

S(n)= 10×4
10+4−1

 = 40
13

 = 3.07 and maximum speed up that can be

achieved is 4 times because n=4.

2. Throughput U(n)=no.of tasks executed per unit time

= 𝑚
(𝑛+𝑚−1)𝑡

lim𝑚→∞ 𝑈(𝑛)=1 assuming that t=1 unit time.
t=1 i.e. U(n)= 𝑚

𝑛+𝑚−1
 = 10

4+10−1
=10
13

 =0.8

It means that in our example,the processor utilization using
pipelined tasks is 80 %.
3. Efficiency E(n)=Ratio of the actual speed-up to the max-
imum speed-up
i.e. = 𝑆𝑝𝑒𝑒𝑑−𝑈𝑝

𝑛
 = 𝑚

𝑛+𝑚−1

lim𝑚→∞ 𝐸(𝑛)=1
Which is same as throughput.
Note : Practically, m and n are very large.

6 INSTRUCTION PIPELINE :
We discussed the performance of a pipeline in the above sec-
tion. But,practically things are different.There is a possibility
that a instruction might delay in its execution in order to re-
solve a pipeline hazard. This situation is referred to as a stall
or a bubble in pipeline execution. Let us first draw a pipeline
with a bubble or stall :[5]
Let us understand this pipeline now :
Here,Instruction I2 is incurring a cache miss which requires 3
time units during instruction fetch.

A cache miss stalls all the instructions on the peipeline both
before and after the instruction causing the miss. This delay of
three units time has worsened the pipeline performance.

6.1 Understanding pipeline “stall” :

1 Due to instruction dependency : An instruction is being
executed in a pipeline. The result of its execution is an input to
the next instruction. Therefore ,the latter instruction cannot
start its execution until it gets the input from the previous in-
struction. Such kind of dependency is called instruction de-
pendency.[1,5]

2 Due to data dependency : Data dependency in pipeline oc-
curs when a source operand of instruction Ii depends on the
result of executing a preceding instruction Ij ,i>j .
The hazards discussed here involve registers.
Types Of Data Dependency with Example :[5]

 1 2 3 4 5 6 7

ADD R1,R2,R3 IF ID EX MEM WB

SUB R4,R5,R1 IF IDSUB EX MEM WB

AND R6,R1,R7 IF IDAND EX MEM WB IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1199
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

(i)RAW (Read After Write): j tries to read a source before i
writes it,so j incorrectly gets the old value.
This is the most common type of hazard and can be overcome
using forwarding.[7]
Example:
The key insight in forwarding is that the result is not really
needed by SUB until after the ADD actually produces it.The
only problem is to make it available for SUB when it needs it.
If the result can be moved from where the ADD produces it
(EX/MEM register), to where the SUB needs it (ALU input
latch), then the need for a stall can be avoided.
Using this observation , forwarding works as follows:

 -The ALU result from the EX/MEM register is always fed
back to the ALU input latches.
 -If the forwarding hardware detects that the previous ALU
operation has written the register corresponding to the source
for the current ALU operation, control logic selects the for-
warded result as the ALU input rather than the value read
from the register file.

Forwarding of results to the ALU requires the additional of
three extra inputs on each ALU multiplexer and the addtion
of three paths to the new inputs.

The paths correspond to a forwarding of:
(a) the ALU output at the end of EX,
(b) the ALU output at the end of MEM, and
(c) the memory output at the end of MEM.

Without forwarding our example will execute correctly with
stalls:

 1 2 3 4 5 6 7 8 9

ADD R1, R2, R3 IF ID EX MEM WB

SUB R4, R5, R1 IF stall stall IDsub EX MEM WB

AND R6, R1, R7 stall stall IF IDand EX MEM WB

As our example shows, we need to forward results not only
from the immediately previous instruction, but possibly from

an instruction that started three cycles earlier. Forwarding can
be arranged from MEM/WB latch to ALU input also. Using
those forwarding paths the code sequence can be executed
without stalls:

The first forwarding is for value of R1 from EXadd to EXsub .
The second forwarding is also for value
of R1 from MEMadd to EXand.
This code now can be executed without stalls.

Forwarding can be generalized to include passing the result
directly to the functional unit that requires it: a result is for-
warded from the output of one unit to the input of another,
rather than just from the result of a unit to the input of the
same unit. [5],[6]

(ii) WAW (write after write) - j tries to write an operand be-
fore it is written by i. The writes end up being performed in
the wrong order, leaving the value written by i rather than the
value written by j in the destination.

This hazard is present only in pipelines that write in more
than one pipe stage or allow an instruction to proceed even
when a previous instruction is stalled. The DLX integer pipe-
line writes a register only in WB and avoids this class of haz-
ards.

WAW hazards would be possible if we made the following
two changes to the DLX pipeline:

▪move write back for an ALU operation into the MEM stage,
since the data value is available by then.
▪suppose that the data memory access took two pipe stages.

Here is a sequence of two instructions showing the execution
in this revised pipeline, highlighting the pipe stage that writes
the result:

Unless this hazard is avoided, execution of this sequence on
this revised pipeline will leave the result of the first write (the
LW) in R1, rather than the result of the ADD.

Allowing writes in different pipe stages introduces other prob-
lems, since two instructions can try to write during the same
clock cycle. The DLX FP pipeline , which has both writes in
different stages and different pipeline lengths, will deal with
both write conflicts and WAW hazards in detail.

 1 2 3 4 5 6 7

ADD R1, R2, R3 IF ID EXadd MEMadd WB

SUB R4, R5, R1 IF ID EXsub MEM WB

AND R6, R1, R7 IF ID EXand MEM WB

LW R1, 0(R2) IF ID EX MEM1 MEM2 WB

ADD R1, R2,
R3 IF ID EX WB

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1200
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 (iii) WAR (write after read) - j tries to write a destination be-
fore it is read by i , so i incorrectly gets the new value.

This can not happen in our example pipeline because all reads
are early (in ID) and all writes are late (in WB). This hazard
occurs when there are some instructions that write results ear-
ly in the instruction pipeline, and other instructions that read a
source late in the pipeline.

Because of the natural structure of a pipeline, which typically
reads values before it writes results, such hazards are rare.
Pipelines for complex instruction sets that support autoincre-
ment addressing and require operands to be read late in the
pipeline could create a WAR hazards.

If we modified the DLX pipeline as in the above example and
also read some operands late, such as the source value for a
store instruction, a WAR hazard could occur. Here is the pipe-
line timing for such a potential hazard, highlighting the stage
where the conflict occurs:

SW R1, 0(R2) IF ID EX MEM1 MEM2 WB

ADD R2, R3,
 R4 IF ID EX WB

If the SW reads R2 during the second half of its MEM2 stage
and the Add writes R2 during the first half of its WB stage, the
SW will incorrectly read and store the value produced by the
ADD.

(iv)RAR (read after read) - this case is not considered as a
hazard .

6.2 When are the Stalls Required ?
Unfortunately,not all potential hazards can be handled by for-
warding.
Consider the
following
sequence of
instructions: [5,6]

 1 2 3 4 5 6 7 8

LW R1, 0(R1) IF ID EX MEM WB

SUB R4, R1, R5 IF ID EXsub MEM WB

AND R6, R1 R7 IF ID EXand MEM WB

OR R8, R1, R9 IF ID EX MEM WB

The LW instruction does not have the data until the end of
clock cycle 4 (MEM) , while the SUB instruction needs to have
the data by the beginning of that clock cycle (EXsub).

For AND instruction we can forward the result immediately
to the ALU (EXand) from the MEM/WB register(MEM).

OR instruction has no problem, since it receives the value
through the register file (ID). In clock cycle no. 5, the WB of
the LW instruction occurs "early" in first half of the cycle and
the register read of the OR instruction occurs "late" in the se-
cond half of the cycle.

For SUB instruction, the forwarded result would arrive too
late - at the end of a clock cycle, when needed at the begin-
ning.

The load instruction has a delay or latency that cannot be elim-
inated by forwarding alone. Instead, we need to add hard-
ware, called a pipeline interlock, to preserve the correct execu-
tion pattern. In general, a pipeline interlock detects a hazard
and stalls the pipeline until the hazard is cleared.

The pipeline with a stall and the legal forwarding is:

 1 2 3 4 5 6 7 8 9

LW R1, 0(R1) IF ID EX MEM WB

SUB R4, R1, R5 IF ID stall EXsub MEM WB

AND R6, R1 R7 IF stall ID EX MEM WB

OR R8, R1, R9 stall IF ID EX MEM WB

The only necessary forwarding is done for R1 from MEM
to EXsub.
Notice that there is no need to forward R1
for AND instruction because now it is getting the value
through the register file in ID (as OR above).

There are techniques to reduce number of stalls even in this
case, which we consider next.

6.3 Pipeline Scheduling :

Generate DLX code that avoids pipeline stalls for the follow-
ing sequence of statements:[5]

 a = b + c ;
 d = a - f ;
 e = g - h ;
Assume that all variables are 32-bit integers.Wherever neces-
sary,explicitly explain the actions that are needed to avoid
pipeline stalls in your scheduled code.

Solution:
1.The DLX assembly code for the given sequence of statements
is:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1201
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LW Rb, b IF ID EX M WB

LW Rc, c IF ID EX M WB

Add Ra,Rb,
Rc IF ID stall EX M WB

SW Ra, a IF stall ID EX M WB

LW Rf, f stall IF ID EX M WB

Sub Rd, Ra,
Rf IF ID stall EX M WB

SW Rd, d IF stall ID EX M WB

LW Rg, g stall IF ID EX M WB

LW Rh, h IF ID EX M WB

Sub Re, Rg,
Rh IF ID stall EX M WB

SW Re, e IF stall ID EX M WB

Running this code segment will need some forwarding. But
instructions LW and ALU(Add or Sub), when put in sequence,
are generating hazards for the pipeline that can not be re-
solved by forwarding. So the pipeline will stall. Observe that
in time steps 4, 5, and 6, there are two forwards from the Data
memory unit to the ALU in the EX stage of the Add instruc-
tion. So also the case in time steps 13, 14, and 15. The hard-
ware to implement this forwarding will need two Load
Memory Data registers to store the output of data memory.
Note that for the SW instructions, the register value is needed
at the input of Data memory. The better solution with compil-
er assist is given below.

Rather then just allow the pipeline to stall, the compiler could
try to schedule the pipeline to avoid these stalls by rearrang-
ing the code sequence to eliminate the hazards.[7]

2.Suggested version is (the problem has actually more than
one solution) :

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Explanation

LW Rb, b IF ID EX M WB

 LW Rc, c IF ID EX M WB

LW Rf, f IF ID EX M WB

Add Ra,
Rb, Rc IF ID EX M WB

Rb read in
second half
of ID;
Rc forwarded

SW Ra, a IF ID EX M WB Ra forwarded

Sub Rd,
Ra, Rf IF ID EX M WB

Rf read in
second half
of ID;

 Ra forwarded

LW Rg, g IF ID EX M WB

LW Rh, h IF ID EX M WB

SW Rd, d IF ID EX M WB
Rd read in
second half
of ID;

Sub Re,
Rg, Rh IF ID EX M WB

Rg read in
second half
of ID;
Rh forwarded

SW Re, e IF ID EX M WB Re forwarded

The same color is used to outline the source and destination of
forwarding.
The blue color is used to indicate the technique to perform the
register file reads in the second half of a cycle, and the writes
in the first half.

Note: Notice that the use of different registers for the first, se-
cond and third statements was critical for this schedule to be
legal! In general, pipeline scheduling can increase the register
count required.

7 CONCLUSION :

In this paper, the basic principles involved in designing pipe-
line architectures were considered.Our coverage started with a
discussion on a number of metrics that can be used to assess
the goodness of a pipeline.We then moved to present a general
discussion on the main problems that need to be considered in
designing a pipelined architecture.

– In particular two main problems are considered :- Instruc-
tion and data dependency.

References :

[1] Book : Computer Organization by Hamacher.
[2] Parallelism and pipelining by David G. Messer-

schmitt,University Of California.
[3] Pipelining Design Techniques by Mostafa Abd-El-

Barr & Hesham El-Rewini
[4] Project Management Graphics by Edward Tufte:

B.S. and M.S. in statistics, Stanford University,
1964. Ph.D. in political science, Yale University,
1968

[5] Website : http://www.cs.iastate.edu/
[6] Website :

https://www.cs.uaf.edu/2011/fall/cs441/lecture/
09_20_pipelining.html ;lecture by Dr. Lawlor

[7] Website :
https://courses.engr.illinois.edu/cs232/sp2010/lec
tures/L13.pdf

IJSER

http://www.ijser.org/
http://www.cs.iastate.edu/
https://www.cs.uaf.edu/2011/fall/cs441/lecture/09_20_pipelining.html
https://www.cs.uaf.edu/2011/fall/cs441/lecture/09_20_pipelining.html

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1202
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

IJSER

http://www.ijser.org/

